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1. INTRODUCTION

The well-known Whittaker—Kotelnikov—-Shannon sampling theorem
states that every signal function f which is bandlimited to [ —o, 0] can be
completely reconstructed from its sampled values f(nk/s), ke Z. This
theorem has several forms. We formulate one of them which was proved by
Kotelnikov [14].

THEOREM A. Let f'e L,(R)n C(R) and the support of the Fourier trans-
form of f be contained in [ —a, 6. Then for any xe R

fx)= ). flnk/o)sinc(o(x — nk/s)),

keZ
where sinc(x)=x"1'sin x for x#0 and =1 for x=0.

Koteinikov [14] first discovered the information sense of Theorem A.
He noted that the quantity of information necessary for reconstructing in
the time interval [ — 7, T'] the signal function f defined in this theorem is
asymptotically equal to the quantity of information for determining 267 /%
real numbers. Shannon [18] had a similar idea for random processes.

Let W< C(R). Denote by #7(W) the e-entropy of W in the space
C([—T,T]). Taking the basic idea of Kotelnikov and Shannon
Kolmogorov [13] introduced the superior and inferior s-entropies per
unit length H$(W) and H!{(W) as the superior and inferior limits of
(2T) ' #T(W). Tikhomirov [21] obtained the first results on these
quantities, in particular, the following precise assertion of Kotelnikov’s
hypothesis:
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2 DINH-DUNG

THEOREM B. Let SB, be the set of functions which are bandlimited to
[—o, 0] and bounded on R by constant 1. Then

. 1. ; 1
lim H{(SB,)/lo P lim H{(SB,)/log —= /.
g0 -0 &

Din’ Zung [10] proved a generalization of Theorem B in terms of the
mean g-entropy in the space L (R"), 1 <g< oo, for the set of multivariate
functions bandlimited to arbitrary Jordan-measurable subsets of R". Latter
on, Tikhomirov introduced the mean e-dimension in L,(R") also based on
Kotelnikov and Shannon’s idea, but the role of the ¢-entropy is replaced by
the e-dimension which is inverse to well-known r-width. The above
mentioned approximation characteristics were studied in [8-11, 13, 15, 21]
for sets of bandlimited functions, of analytic functions, and of smooth
functions of one and several variables. In the study of these quantities the
truncation LZ—approximation by finite sampling sums played a central role,
where LT=L ([T, T]"), 1<g< 0.

Also, numerous articles were devoted to various aspects of the classical
sampling theorem (Theorem A). Among them the papers of Buslaev and
Vituskin [4], Sofman [19,20], Butzer, Splettstosser, Stens and others
from the Aachen group (see bibliography in [5, 6]) Boas [2], Brown [3],
Landau, Pollak, Slepian, and Barcelé and Coérdoba (see bibliography in
[1]) are the closest to our paper.

The e-entropy per unit length, mean e-entropy, and mean e-dimension
are suitable for expression of the corresponding methods of approximation
for functions on R” only in the case when the ¢-entropy or e-dimension of
the set W7 of restrictions on the set @, of functions f € W is asymptotically
proportional to the volume of Qf for T large enough, where Q=
{xeR":|x;|<T,, i=1,.,n}, x=(x,.,x,), T=(Ty,.,T,), T,>0.
However, this property does not hold, in general, for many cases. In our
paper we deal with some such cases. Namely, we investigate the
e-dimension and e-entropy of the L,-bounded set SB , of multivariate
functions bandlimited to the given Jordan-measurable subset G of R” for
various pairs p and ¢. It turns out that these quantities have asymptotic
orders of the form (vol Q;)° F(s, p, q), s> 0, for T — co. Here the power s
is a function of p and ¢ and can be smaller than 1, equal to 1, or greater
than 1. We shall compute s and Fl(e, p, q) for various pairs p and g¢.

To establish these asymptotic orders we shall present a multi-
variate modification of the classical sampling theorem, an analogue
of Marcinkiewcz’ theorem on equivalence between the L,-norm and
the discrete /,-norm for bandlimited functions and the truncation
L]-approximation by finite sampling sums for bandlimited functions.
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THE SAMPLING THEOREM
2. PRELIMINARIES

2.1. Bandlimited Functions

Let G be a subset of R”. As usual, we denote by L,(G), 1 <g< oo, the
normed linear space of all those functions on G for which the integral norm

lesor=( ] oo az)

(with the change to esssupp-norm when ¢=0) is finite. If G=R"
then L,(G) = L,, Ifll,, = Ifll, and if G = @, then LG) = Ly,
10z =111 r-

The locally integrable function f on R” is said to be bandlimited to G if
the support of f is contained in G, where f denotes the Fourier transform
in the distributional sense of f. Denote by B; , the set of all those functions
from L, which are bandlimited to G. If G=Q,,0¢R"_, then B; ,= 8B, ,.
Here R”. ={xeR":x,>0, i=1,..,n}, and x; is the ith coordinate of x,
ie, x={(xy, .., x,). The Schwartz theorem states that B, , coincides with
the set of all those functions from L, which can be continued analytically
to entire functions of exponential type <o (cf. [23]). In harmonic
approximation of functions on R” bandlimited functions play a basic role
as trigonometric polynomials for periodic functions.

Let xy={(Xy Y150 X0 Vu)» T/x=(0/X(, ., W/x,), x*=1T¢_, x% in par-
ticular, x'=[]7_, x; for xeR", yeR", and ae R The symbol ke Z"
will be dropped in the series Y, _,». For the sequence of real or complex
numbers {a,}, . we define the series-norm | {a,}[,, 1 < p<co (with the
change to the sup-norm when p = ),

I{a, = (Z |ak|P)W.

From the Jackson—Nikolskii inequality
Ifl,<2"P= Y| fl,,  feB,, (1<p<gq<oo) )

(cf. [17]) follows
B,,=B,, (1<p<g< o). (2)

/

For the following inequality see also [17]:

sup |[{/(x—hk)},

xeR"

<1 (+ho) b= | f],. feB, (he R",). 3)

i=1
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2.2. Sampling Representations

The sampling representation in Theorem A has a natural multidimen-
sional generalization. However, it is not suitable in many problems of
harmonic approximation. The reason is the slow rate of convergence
of the kernel sinc in infinity. There are other more satisfactory sampling
representations. The following Cartwright representation was employed
[13,9, 10, 15] for study of the e-entropy per unit length and mean
e-dimension.

The multidimensional sinc-function is defined by

::

sinc,(x) = || sinc(x;), xeR"

i=1

Let 0,6€R” and p=o0+9. Put
C(x) = sinc,(px) sinc,(dx).
For every function f € B, , the following sampling representation holds:

fx)=} f(hk) C(x—hk)  (h=m/p). (4)

The convergence of the series and the equality in (4) are understood
pointwise. This formula was proved in [7] for univariate functions and in
[9] for multivariate functions.

We need a generalization of the sampling representation (4) which can
be proved in a similar way:

THEOREM 1. Let 1< p<o0, 0,0€R”, p=c+0. Let YyeB;s, be a
SJunction such that y(0)=1 and ¢(x)=sinc,(px)Y(x), x€ R". Then every
f=B, , can be represented by the series

fx)=% flhk) p(x—hk),  xeR" (h=m/p), (5)

converging pointwise.

Remark. Theorem 1 can be obtained directly from the Poisson summa-
tion formula. By use of (3) one can verify that the series (5) converges
uniformly on R” for p < co and uniformly on any compact subset of R” for
p= 0.

Let ¢ be the function defined in Theorem 1 and let E,(¢) be the set of
all those functions from L, which can be represented by the series

f=Y feo(-—hk)  (h=mn/p), (6)



THE SAMPLING THEOREM 5

where the convergence and equality are understood in L,. From (1) one
easily see that the series (6) converges at every xe R”" to f{x). Moreover,
we have, since f, = f(hk), ke Z", for every fe E (¢)

f(x) =2 f(hk) ¢(x — hic). (7)

LemMma 1. Under the hypotheses of Theorem 1 the following inclusions
hold:

Bop=Ef@)=B, 5,

Proof. The first inclusion follows from Theorem 1 and (3). It is not
hard to check that every finite sum of the series (7) belongs to B, ; ,.
Since B, ; , is a closed subspace of L, (cf. [17]) we obtain the second
inclusion.

2.3. An Analogue of Marcinkiewicz’ Theorem

A well-known theorem of Marcinkiewicz establishes the equivalence of
the L,-norm of trigonometric polynomials of order <m and the discrete
lfj”“—norm constituted from their values at a uniform lattice (cf. {247).
We prove an analogue of this theorem for bandlimited functions.

THEOREM 2. Let 1< p<o0,0,0€R" , and h=mn/(c + ). Suppose that ¢
and & satisfy the condition ad,;<o,<bd;, i=1,.,n, for some positive
constants a and b. Then there exist positive constants c¢=c(a, b, p) and
¢’ =c'(a, b) such that for every feB, ,

e || fli, < IH{fH) N, < c'a' P11, (8)

Proof. We prove the theorem for the case 1< p<oco. The cases
p=1, co can be proved in a similar way. The second inequality of (8) is a
simple consequence of (3). Let fe€ B, ,. Consider the sampling representa-
tion (5) of f with ¢(x)=sinc,(px)sinc, (dx), p=0o+6. By Holder’s
inequality we have

|Gl < X 1fUhk) sine,(p(x — hk))” || {sine,(8(x — Ak )} 2,

where 1/p +1/p’ = 1. Since sinc,(d - )€ B ,- by (3) one can verify that

I{sinc,(6 )}, < M,

where M is a certain positive constant depending on «, b, and p (n fixed).
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Combining both inequalities we obtain

£ <MP 3 | f(Rk)I” {Isinc,(p )]}

Hence the first inequality of (8) follows.

3. Tae TRUNCATION L:—APPROXIMATION

Let F and G be non-negative functions defined in the set X. We write
F(x)<G(x), xeX, if there exists a positive constant ¢ such that
F(x)< cG(x) for every xe X and write F(x) =< G(x), xe X, if F(x)<G(x)
and G(x)< F(x), xeX. We denote x<y (x<y) for x, yeR" if x, <y,
(x;<y)i=1,..,n

For the function feE,(p) we define the finite sampling sum Sy f,
NeR" , from the sampling series (7) by

(SvN)x)= Y f(hk) o(x— hk),
kelZy
where Zy={keZ": |k;| <N, i=1, ., n}
THEOREM 3. Let 1 <p,g< o, 6,6 € R, me N. Let ¢(x)=

sinc,(px){sinc,(dx/m)}™. Suppose that o and & satisfy the condition
ad < o < bo for some positive constants a and b. Then

If=Sxflar<Y, 411 fl,,  fe€EJ @), T, NeR", ,Nh>T,
I

where the sum ranges through all proper subsets I of the set J of natural
numbers at most n and

11
A=[] TVUNh,—T)™ """, r=min<—,—)_
iel

Proof. We prove Theorem 3 for the case 1< p, ¢ <oo. The remainder
of cases can be proved in a similar way. Let us first consider the case p=gq.
Let f'e E,(¢). It is not hard to check the inequality

1= Sx Sl N finlprs
I
where

finx)=%  f(hk) o(x—hk),

keZin
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Z,n={keZ":|k;|>N,, iel}. Thus, to prove the theorem it is sufficient
to establish the inequality

HfI,Nl|p,T<AI”f“p7 fEEp(q))a N7 TER’:’Nh>T: (9}

for an arbitrary subset I of J, I# J. For the sake of simplicity, we verify it
for I={1,2,.,s}, 1<s<n Wrte x=(x,x"), x'=(x;,.,x,), x'=
(Xsp 15 X,). We have

fivx)= Y fK,x")o'(x' k"),

k'e PN

where Py ={k'eZ°:|k;|>N; i=1,.,5} and ¢'(x')=sinc(p'x’)
{sinc,(6’x'/m)}™. Then, by Holder’s inequality,

1/p 1/p
th,N(x>|<( ¥ If(h’k’,x”)l”) (z |<o'(x'—h'k')v') , (10)
Kezs ke Py

where 1/p+ 1/p" =1. By an easy estimation we obtain

! ( ) |<p'(-—h'k')|"’>

k'e Py
Since for fixed x"e R"™° the function f(-,x") belongs to E, (¢') as a
function of the variables x, ..., x,, by Lemma 1 and (3) we get

ISk, X)), < 1A 3,
{c and ¢ fixed). Hence,
AR D, <1 (12)

Combining (10)-(12) we prove (9). Therefore the theorem is proved for
p=gq. From this case we obtain the theorem for p > g because of the trivial
inequality ||/, r<QT)/4~" | f|,r, and for p<gq because of the
inequality || I, <l f]l,, f € E,(¢) which follows from Lemma 1 and (1).

p |

<A, (11)

p. T

In a similar way we can prove

THEOREM 4. Under the hypotheses of Theorem 3 we have
IS ln> IS /1y (1=38),  fe B (o) M. TeRL Nh<T,
1

where the sum ranges through all proper subsets I of J and

B, <[[ N!"“"(T,~ N,h)V»=™  T,NeR" ,Nh<T

iel
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4. THE ¢-DIMENSION AND &-ENTROPY

4.1. e-Dimension

Let X be a normed linear space and A and B be subsets of X. Set
E(A, B, X)=sup inf |x— y|.

x€eAd yeB

Denote by %, the set of linear manifolds in X of dimensions at most m.
The quantity

dy(4,X)= inf E(4, LX)

is called the m-dimensional Kolmogorov width of 4. The quantity

H (A, Xy=inf{m :3Le %, : E(4, L, X)<&} (¢>0)

is called the e-dimension of 4. The last approximation characteristic,
inverse to the width d,(A4, X), expresses the necessary dimensions of a
linear manifold for approximation of A within to &

Denote by meas G the measure of measurable G < R". For W< L, SW
is the intersection of W with the unit ball of L, and W7 is the set of restric-
tions of functions of W in the set Q,={xeR": |x;|<T;, i=1, .., n}. The
following theorem was proved in [10].

THEOREM C. Let 1<p<oo and let G be a Jordan-measurable and
bounded subset of R". Then

lim (27)"" A((SBg,,)7, L) = (2n) " meas G.
T— o0

This theorem shows that the e-dimension per unit volume of SB; , is
equal asymptotically to (2z) " meas G expressing the bandwidth of func-
tions from SB, ,, and, consequently, does not depend on ¢ when T'— o0.!
Moreover, one can also see that the necessary dimensions of a linear
manifold for the L!-approximation of SB , within arbitrary & is propor-
tional asymptotically to the volume of Q, as well the bandwidth of
functions from SB ,. However, this property does not hold, in general,
for the same L]-approximation of SB; , with various pairs p and q.

First we prove that the e-dimension per unit volume of SB; , is not
bigger asymptotically than (27) ™" meas G for every pair p and ¢. Later we
will see that this quantity can be equal asymptotically to zero for the case
g>2 (Theorem 7). Set X, (G, T)=#,((SBg,,)", L]) for the fixed pair p
and q.

VT oo means T, —» 4o fori=1, .., n
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THEOREM 5. Let 1<p,q< o0 and let G be a Jordan-measurable and
bounded subset of R". Then

lim sup (2T) "' #(G, T)<(2n) "meas G (0<e<1).
T— o

Proof. Step 1. Let G=Qg, ie, B ,=B,, Taking an arbirary
o€ R, , by Theorem 1 we have for every fe B, ,

fx)=} f(hk) @(x — hk),

where ¢(x)=sinc,(px){sinc,(6x/2)}% p=35+0, h=mn/p. Let « be a fixed
positive number, ;<o <1. We define Ne R". by N;h,=T,;+ T% i=1, .., n,
for Te R”,. From Theorem 3 it is not hard to check that | f—Syfl, r
converges to 0 uniformly on SB, ,, as T — co. Thus, for arbirary 0 <e <1,
there exists some T°e R” such that ||/~ S, fli, r<e for all T>T7° and
feSB, ,. Hence,

E((SB,,,)", L", L;)<s,

where L is the linear hull of the functions ¢(-— k), k€ Z,. This implies
that

HAG, T)< H (N, +1)=n""(2T)! o' + o(T")

i=1
because dim L <J]/_, (2N;+1). Letting T — o, we obtain
lim sup (27) ' (G, T) < "(c + 6"

T — o
As 9 is arbitrary, this proves the theorem for the case G=0Q,.

Step 2. Let G=U7, (x/+Q,) and int(x/+Q,) nint(x" + Q,) # &,
for j# j’. This case can be proved in a way similar to Step 1 using the
representation for f e SB,; ,

m

Fx)= ¥ explidx’, x)) (),

j=1

where f;e B, , and || f;|, <c, the constant ¢ does not depend on f (cf. [9]).

I,

Step 3. Let G be an arbitrary Jordan-measurable set. We will follow
[9]. There exist sets G’ and G” of the form considered in Step 2 such that
G' <G G" and the measure of G'\G" is as small as we like. Now the
theorem follows from the case considered in Step 2 and from the trivial
inclusions SB; ,< SBg; ,< SBy: .

The following two theorems sharpen Theorem 3.
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THEOREM 6. Under the hypotheses of Theorem 5 let p > q. Then for some
O<egy<1

lim (27)~' #(G, T)=(2r) "meas G (0<e<e)

T o

Proof. In virtue of Theorem C we must prove the theorem for the case
p>q. For the latter case from Theorem C and (2) we can easily verify the
inequality

lim inf 2T) ™! A(G, T) > (2n) " meas G (O<e<egy)

T—o o

for some 0 <&, < 1. This and Theorem 5 imply Theorem 6 for p > gq.

Denote by B;, 1 < p< oo, the unit ball of the normed linear space /; of
finite sequences {x};_, with the norm (this norm is changed to max-
norm when p=o0)

s 1/p
Hoseblg=( 3 1al?)
k=1

THEOREM 7. Under the hypotheses of Theorem 5 let p<q and G=Q,.
Then the following assertions hold:

(i) Forg<2
lim sup (2T) ' #(G, T)
T—
=< liminf (2T)~' #(G, T) < o', 6e R",0<e< 1.

T— o0
(ii)) For g>2
lim sup (2T) %7 #(G, T)

T— o

=< lim inf (2T) %% #(G, T) < ¢ "d*,ae R",0<e< g,
T

where 0 <gq <1, v=2max{1, (1/2—1/q)/(1/p — 1/q)} and p=max{1, 2/p}.

Proof. We prove the theorem in the case p <2 < ¢. The other cases can
be proved in a similar way.

Upper Estimate. For p<2 < g we check the inequality

lim sup (27) =% #(G, T) < e~ *6?", ceR",0<e<e. (13)

T—
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Consider the sampling representation (5) of feB;, with ¢(x)=
sinc,(20x){sinc,(6x/2)}% &6 = g, p = 26, h = n/20. Define N € R, by
Nh =2T for Te R, and put V= {Syf:feSB;,} and U =
{f—Snf:feS8B; ,}, where S, f is the associated finite sampling sum.
In view of the inclusion SBg; ,<= V' + U, we have

r%/‘s((i T) < e%/A/Z(VvTv L;) + %/Z(UTs L;]T) (14)

First we estimate the first term in the right-hand part of (14). By
Theorem 2 we get

H{fhk) H s <02 1L f1],

and

IS s> e N fllr,  feV,

where s=117_, (2[N,]+1) (here and hereafter [a] denotes the integral
part of ae€ R). Hence by properties of the m-width one can verify that for
m<s

d, (VT L])<c a7~ d, (B, 1), (15)

where ¢, = ¢,(p, q) is a positive constant. Set m = (le) 2 (2T)¥ ¢*7, where
the constant will be defined later. Applying the estimate of 4,(B;,/;} in
[127, we obtain

1 —1/2
d, (B, 13) < s"im "
Lcyheat1p, ceER”,0<e<egg, (16)

where ¢y=¢0(1), c,=c3(p,q) are positive constants. Defining A=
(2¢,¢,)7", from (15) and (16) we have 4,,(V", L]) <¢/2. This implies

Hop(VE LTy <m<e~ %0 T?, ¢, TeR",0<e<g.  (17)

We now estimate the second term in the right-hand part of (14). From
Theorem 3 it follows that | f—Syf|, r converges to zero uniformly on
SBg , as T— co. Hence we obtain the equality (U7, LqT)=() (here ¢
and ¢ are fixed). This and (14), (17) prove (13).

Lower Estimate. From (13) we can see that the theorem will be proved
for the case p <2 < ¢ if the following relation is true:

lim inf 2T) =% #(G, T)
T—

>e 2P, ceR",0<e<e,. (18)
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Let ¢'(x)= {sinc,(6x/2)}* and let « be a fixed positive number,
0<a<3 We define Ne R" by Nh,=T,—T?, i=1, .., n, where h=2n/o.
Let H be the set of all linear combinations f of the functions ¢'(-— hk),
ke Zy, such that |f|,<1 In order to prove (18), since by Lemma I
Hc SBg ,, it is sufficient to check the inequality

lim inf (2T) =% 4(H", LT)

T— a
>e %%,  ceR,0<e<s,. (19)

From Theorem 4 it is not hard to verify that | f], » converges to | fIl,
uniformly on H when T'— oo. Hence by Theorem 2 we have

Iflor=<a " I{f()}Hy  feH, T2T° (t=p,q),

where r=T1]7_, (2[N;] + 1). By the latter relation, analogously to that in
the upper estimate, one can see that

dm(HTa L;) Z c30.1/p— Ve dm(B;a l;)’

where ¢; = cs(p, q) is a positive constant. Further, the proof of (19) can be
continued in the same way as in the proof of (13).

4.2. e-Entropy

Let X be a metric space and A be a compact subset of X. Denote by
N(A, X), ¢> 0, the minimal number of elements of an ¢-net of A. Then the
quantity #(A4, X)=log #4.(4, X) is called the s-entropy of 4 (cf. [13]).
This quantity expresses the necessary number of bits for the binary
recording the “information” set 4 within to e.

LeMMA 2. Let X be a Banach space and A be a compact subset of X.
Then

H (A, X) < H;po(4, X) log{8(d, +¢)/e},
where dy=dy(A4, X).

Proof. Let m(y)=sup{m:d,(A4, X)>1/y}. The lemma follows from
the trivial inequality X (4, X)=m(1l/e) and the inequality m(2/c)
log{8(d, +¢)/e} = #(A, X), proved in [16].

LemMMA 3. Let G be a bounded subset of R". Then (SBg, ,)" is a compact
subset of L] for any pair p, q and T R",.

Proof. 1t is clear that we must prove the lemma only for G=Q,, and,
because of (2), for p = c0. This case was proved by Bernstein and Nikolskii
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for p=g=co (cf. [17]). Hence by the inequality llfi]q,Ts(ZT)l/”’ 1o, 7
the lemma follows for p= o0, ¢ < 0.

Set H#(G, T)= #,((SBg, )", L]) for the fixed pair p and g.

THEOREM 8. Let 1< p=qg<oo and let G be a Jordan-measurabie
bounded subset of R". Then
lim lim sup log =% 1/e(2T) ! #(G, T) {20)

e—=>0 T

= lim lim inf log ™' 1/e(2T) ' #(G, T)

e—=0 T—w
= (27) " meas G. (213

Proof. Since (SB; ,)" is contained in the unit ball of L}, we have
do((SBg, )", L, )< 1. Hence and from Lemmas 2 and 3 and Theorem 5 it
follows that (20) is not greater than (2n) " meas G. Thus, the theorem will
be proved if we show that the left-hand part of (21) is not less than
(2r) " meas G. As in estimates for e-dimension in Theorem 5 we verify this
inequality only for the case G=Q,. Let ¢(x)=sinc,(px) sinc,(dx), é <o,
p =0 — 6. Taking a fixed positive number o, 0 <« < 1, we define Ne R™. by
Nh;=T,—T% where h=mr/p. Let F be the set of linear combinations f of
the functions ¢(-— hk), ke Z,, such that || f||,< 1. Using Theorem 4 one
can check that there exists 7°e R” such that 27 'F(T)<= FT for any
T>T° where F(T)={feF":||fll,r<1}. Applying the estimate for the
e-entropy of finite dimensional sets in [22, pp. 276-279] we obtain

H27'H(T), L])=slog 4=n""(2T)" (o —8)" + o(T")
as T'— oo, where s=J1]7_, (2[N;]+1) is the dimension of the linear hull
of F(T). Hence, since & is arbitrary and by Lemma 1 27 'F(TYc F'c

(SBg, )7, it is easy to verify that the left-hand part of (21) is not less than
1 "e'=(2n)"" meas G.

Employing Theorem 7 in a similar way we obtain the following

THEOREM 9. Under the hypotheses and notation of Theorem 7 the
Jfoliowing assertions hold:

(i) Forg<?2
lim lim sup log ' 1/e(2T) ™" #AG, T) < ¢!, ceR”.

g0 T-ow

(it) For g>2
lim lim sup ¢ " log ! 1/e(2T) %4 #(G, T) < g, ceR".

e—=0 T-—co
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Remark. Since the unit ball is Jordan-measurable (a set G is called
Jordan-measurable if the Riemann integral of the characteristic function of
G exists), Theorems 5, 6 and 8 and, as is easy to see, Theorems 7(i) and
8(i) are true in the case G in Bg , is the unit ball.
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