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1. INTRODUCTION

The well-known Whittaker-Kotelnikov-Shannon sampling theorem
states that every signal function f which is bandlimited to [ - (J, (J] can be
completely reconstructed from its sampled values f( nkj(J), k E Z. This
theorem has several forms. We formulate one of them which was proved by
Kotelnikov [14].

THEOREM A. Let f E L 2(R) n C(R) and the support of the Fourier trans­
form off be contained in [ - (J, (J]. Then for any x E R

f(x) = L f(nkj(J) sinc((J(x - nkj(J)),
kEZ

where sinc(x) = X-I sin x for x#-O and = 1 for x = o.

Kotelnikov [14] first discovered the information sense of Theorem A.
He noted that the quantity of information necessary for reconstructing in
the time interval [- T, T] the signal function f defined in this theorem is
asymptotically equal to the quantity of information for determining 2aTjn
real numbers. Shannon [18] had a similar idea for random processes.

Let We C(R). Denote by Yf';(W) the a-entropy of W in the space
C( [ - T, T]). Taking the basic idea of Kotelnikov and Shannon
Kolmogorov [13] introduced the superior and inferior a-entropies per
unit length H~(W) and H~(W) as the superior and inferior limits of
(2T)-1 Yf';(W). Tikhomirov [21] obtained the first results on these
quantities, in particular, the following precise assertion of Kotelnikov's
hypothesis:
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THEOREM B. Let SBa be the set of functions which are bandlimited to
[ - (J, (J J and bounded on R by constant 1. Then

Din' Zung [lOJ proved a generalization of Theorem B in terms of the
mean s-entropy in the space LiRn), 1~ q ~ 00, for the set of multivariate
functions bandlimited to arbitrary Jordan-measurable subsets of R n

• Latter
on, Tikhomirov introduced the mean s-dimension in Lq(Rn) also based on
Kotelnikov and Shannon's idea, but the role of the s-entropy is replaced by
the s-dimension which is inverse to well-known n-width. The above
mentioned approximation characteristics were studied in [8-11, 13, 15, 21 J
for sets of bandlimited functions, of analytic functions, and of smooth
functions of one and several variables. In the study of these quantities the
truncation L;-approximation by finite sampling sums played a central role,
where L;=Lq([ -T, Tr), 1~q~ 00.

Also, numerous articles were devoted to various aspects of the classical
sampling theorem (Theorem A). Among them the papers of Buslaev and
Vituskin [4J, Sofman [19,20J, Butzer, Splettstosser, Stens and others
from the Aachen group (see bibliography in [5, 6J) Boas [2J, Brown [3J,
Landau, Pollak, Slepian, and Barcelo and Cordoba (see bibliography in
[1 J) are the closest to our paper.

The s-entropy per unit length, mean s-entropy, and mean s-dimension
are suitable for expression of the corresponding methods of approximation
for. functions on R n only in the case when the s-entropy or s-dimension of
the set W T of restrictions on the set Q T of functions fEW is asymptotically
proportional to the volume of QT for T large enough, where QT=
{xERn:lxil~Ti' i=1, ...,n}, x=(x1, ...,xn), T=(Tu ...,Tn), Ti>O.
However, this property does not hold, in general, for many cases. In our
paper we deal with some such cases. Namely, we investigate the
s-dimension and s-entropy of the Lp-bounded set SBG,p of multivariate
functions bandlimited to the given Jordan-measurable subset G of R n for
various pairs p and q. It turns out that these quantities have asymptotic
orders of the form (vol QT)' F(s, p, q), s > 0, for T ~ 00. Here the power s
is a function of p and q and can be smaller than 1, equal to 1, or greater
than 1. We shall compute sand F(s, p, q) for various pairs p and q.

To establish these asymptotic orders we shall present a multi­
variate modification of the classical sampling theorem, an analogue
of Marcinkiewcz' theorem on equivalence between the Lp-norm and
the discrete l;-norm for bandlimited functions and the truncation
L;-approximation by finite sampling sums for bandlimited functions.
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2. PRELIMINARIES
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2.1. Bandlimited Functions

Let G be a subset of R n
. As usual, we denote by Lq(G), 1~q~ 00, the

normed linear space of all those functions on G for which the integral norm

( )

I/q

IlfIILq(G)= t If(xW dx

(with the change to ess supp-norm when q = (0) is finite. If G = R n
,

then Lq(G) = L q, IlfllLq= Ilfll q, and if G = QT' then Lq(G) = L;,
IlfIIL;= Ilfllq,T'

The locally integrable function f on R n is said to be bandlimited to G if
the support ofJ is contained in G, where Jdenotes the Fourier transform
in the distributional sense off Denote by BG,p the set of all those functions
from L p which are bandlimited to G. If G = Q", (J E R:, then BG,p = Ba,p­

Here R: = {x E R n
: Xi> 0, i = 1, ..., n}, and Xi is the ith coordinate of x,

i.e., X = (Xl> ... , x n ). The Schwartz theorem states that B",p coincides with
the set of all those functions from L p which can be continued analytically
to entire functions of exponential type ~(J (cf. [23J). In harmonic
approximation of functions on R n bandlimited functions playa basic role
as trigonometric polynomials for periodic functions.

Let xy=(xIYl> ...,xnYn), n/x=(n/xl, ...,n/xn), xa=IT7=lx~; in par­
ticular, Xl = IT7~ I x: for X ER:, Y ERn, and aER. The symbol k Ezn
will be dropped in the series LkEzn. For the sequence of real or complex
numbers {adkEzn we define the series-norm li{adllp, 1~p~ 00 (with the
change to the sup-norm when p = (0),

From the Jackson-Nikolskii inequality

Ilfll q~ 2n(JI/p-l/q Ilfll p , fEB",p (1 ~ p < q ~ (0) (1)

(cf. [17J) follows

(1 ~ p < q ~ 00 ). (2)

For the following inequality see also [17]:

sup II {j(x - hk)} lip
XERn

n

~ TI (1 + h;(J;)h;l/p Ilfllp,fEB",p(hER:). (3)
;=1
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2.2. Sampling Representations

The sampling representation in Theorem A has a natural multidimen­
sional generalization. However, it is not suitable in many problems of
harmonic approximation. The reason is the slow rate of convergence
of the kernel sinc in infinity. There are other more satisfactory sampling
representations. The following Cartwright representation was employed
[13,9,10,15] for study of the a-entropy per unit length and mean
a-dimension.

The multidimensional sinc-function is defined by

n

sincn(x) = TI sinc(xJ,
i~l

Let (J, 6 E R: and p = (J + 6. Put

For every function f E B",p the following sampling representation holds:

f(x) = 'Lf(hk) C(x-hk) (h=n/p). (4)

The convergence of the series and the equality in (4) are understood
pointwise. This formula was proved in [7] for univariate functions and in
[9] for multivariate functions.

We need a generalization of the sampling representation (4) which can
be proved in a similar way:

THEOREM 1. Let 1 ~ P ~ 00, (J, 6 E R:, p = (J + 6. Let tjJ E B J ,2 be a
function such that tjJ(O) = 1 and cp(x) = sincn(px) tjJ(x), x ERn. Then every
f = B",p can be represented by the series

f(x) ='L f(hk) cp(x - hk), xERn (h=n/p), (5)

converging pointwise.

Remark, Theorem 1 can be obtained directly from the Poisson summa­
tion formula. By use of (3) one can verify that the series (5) converges
uniformly on Rn for p < 00 and uniformly on any compact subset of R n for
p = 00.

Let qJ be the function defined in Theorem 1 and let Ep( qJ) be the set of
all those functions from L p which can be represented by the series

(h=n/p), (6)
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where the convergence and equality are understood in Lp • From (1) one
easily see that the series (6) converges at every x ERn to f(x). Moreover,
we have, sincefk=f(hk), kEZn, for every fEEp(cp)

f(x) = If(hk) cp(x - hk). (7)

LEMMA 1. Under the hypotheses of Theorem 1 the following inclusions
hold:

Proof The first inclusion follows from Theorem 1 and (3). It is not
hard to check that every finite sum of the series (7) belongs to Bp+b,p.
Since BpH, p is a closed subspace of L p (cf. [17]) we obtain the second
inclusion.

2.3, An Analogue of Marcinkiewicz' Theorem

A well-known theorem of Marcinkiewicz establishes the equivalence of
the Lp-norm of trigonometric polynomials of order :::; m and the discrete
l;m+l-norm constituted from their values at a uniform lattice (cr. [24J),
We prove an analogue of this theorem for bandlimited functions.

THEOREM 2. Let 1:::; p:::; 00, (J, <5 E R:, and h = n/((J + 0). Suppose that (J

and <5 satisfy the condition a<5;:::;(J;:::;M;, i= 1, ..., n, for some positive
constants a and b. Then there exist positive constants c = c(a, b, p) and
c' = c'(a, b) such that for every f E B",p

(8)

Proof We prove the theorem for the case 1 < p < 00. The cases
p = 1, 00 can be proved in a similar way. The second inequality of (8) is a
simple consequence of (3). LetfEB",p' Consider the sampling representa­
tion (5) of f with cp(x) = sincn(px) sincn (<5x), p = (J + b, By Holder's
inequality we have

If(xW:::; I If(hk) sincn(p(x - hk)W II {sincn (<5(x - hk))} II;"

where lip + lip' =1. Since sincn (<5,) E Bb,p' by (3) one can verify that

where M is a certain positive constant depending on a, b, and p (n fixed).
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Combining both inequalities we obtain

Hence the first inequality of (8) follows.

3. THE TRUNCATION L~-ApPROXIMATION

Let F and G be non-negative functions defined in the set X. We write
F(x) ~ G(x), x E X, if there exists a positive constant c such that
F(x):::;: cG(x) for every x E X and write F(x) x G(x), x E X, if F(x) ~ G(x)
and G(x) ~ F(x), x E X. We denote x:::;: y (x < y) for x, y E Rn if Xi:::;: Yi
(x i < y;), i= 1, ..., n.

For the function f E Ep ( qJ) we define the finite sampling sum S N f,
N E R:, from the sampling series (7) by

(SNf)(x)= L f(hk) qJ(x-hk),
kEZN

THEOREM 3. Let 1 :::;: p, q :::;: 00, (J, c:5 E R:, mEN. Let qJ(x) =
sincn(px){sincn ( him) }m. Suppose that (J and c:5 satisfy the condition
ac:5 :::;: (J :::;: bc:5 for some positive constants a and b. Then

Ilf - SNfllq,T~l: Alllfll p,
I

where the sum ranges through all proper subsets I of the set J of natural
numbers at most nand

A
I
=n T1jq(N.h- T)~m~r

1 1 1 1 ,

ieI

. (1 1)r=mlfi p'q .

Proof We prove Theorem 3 for the case 1 < p, q < 00. The remainder
of cases can be proved in a similar way. Let us first consider the case p = q.
Let f E Ep ( qJ). It is not hard to check the inequality

Ilf -SNfllp,T~l: Ilfl,Nllp,T'
I

where

fl,N(X)= I f(hk)qJ(x-hk),
kEZI,N
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ZI,N= {kEZn
: Ikil >Ni, iEI}. Thus, to prove the theorem it is sufficient

to establish the inequality

for an arbitrary subset I of J, I -.f. J. For the sake of simplicity, we verify it
for I={1,2, ...,s}, l~s<n. Write x=(x', x"), x'=(xl, ... ,x,.}, x"=
(x s + I' ... , x n )· We have

fl,N(X) = I f(h'k', x") q/(x' - h'k'),
k' E PN'

where PN,={k'Ezs:lkil>Ni, i=l, ...,s} and cp'(x') = sinc,(p'x')
{sinc s(c5'x'lm)}m. Then, by Holder's inequality,

( )
l/P ( )l/P'

Ifl,N(x)1 ~ k'~Z' If(h'k', x"W k';'N Icp'(x' -h'k'W' ,

where lip + lip' = 1. By an easy estimation we obtain

(10)

(11 )

Since for fixed x"ERn
-

s the function f(·,x") belongs to Ep(cp') as a
function of the variables Xl' ... , X" by Lemma 1 and (3) we get

II {J(h'k', x")} lip ~ Ilf(·, x")ll p

(a and c5 fixed). Hence,

II II {J(h'k', . )} lip lip ~ Ilfllp. (12)

Combining (10)-(12) we prove (9). Therefore the theorem is proved for
p = q. From this case we obtain the theorem for p > q because of the trivial
inequality Ilfllq,T~(2T)l/q-l/Pllfllp,T' and for p<q because of the
inequality Ilfllq~ Ilfllp,fEEp(cp) which follows from Lemma 1 and (1).

In a similar way we can prove

THEOREM 4. Under the hypotheses of Theorem 3 we have

where the sum ranges through all proper subsets I of J and

B ""'0 N1-1/p(T_Nh)l/p-m
l~ III l ,

iEI
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4. THE 8-DIMENSION AND 8-ENTROPY

4.1. 8-Dimension

Let X be a normed linear space and A and B be subsets of X. Set

E(A, B, X) = sup inf Ilx - yll.
XEA yEB

Denote by 2 m the set of linear manifolds in X of dimensions at most m.
The quantity

dm(A, X) = inf E(A, L, X)
LE-Pm

is called the m-dimensional Kolmogorov width of A. The quantity

~(A, X) = inf{m : 3LE2m: E(A, L, X)~8} (8)0)

is called the 8-dimension of A. The last approximation characteristic,
inverse to the width dm(A, X), expresses the necessary dimensions of a
linear manifold for approximation of A within to 8.

Denote by meas G the measure of measurable G eRn. For We Lp SW
is the intersection of W with the unit ball of Lp and W T is the set of restric­
tions of functions of W in the set QT= {XE R n

: Ixil ~ Ti, i = 1, ..., n}. The
following theorem was proved in [10].

THEOREM C. Let 1~ p ~ 00 and let G be a Jordan-measurable and
bounded subset of R n

. Then

lim (2T)-1 ~((SBG.p)T,L;) = (2n)-n meas G.
T--> 00

This theorem shows that the 8-dimension per unit volume of SBG,p is
equal asymptotically to (2n) -n meas G expressing the bandwidth of func­
tions from SBG,p, and, consequently, does not depend on 8 when T -+ 00. 1

Moreover, one can also see that the necessary dimensions of a linear
manifold for the L;-approximation of SBG,p within arbitrary 8 is propor­
tional asymptotically to the volume of QT as well the bandwidth of
functions from SBG,p' However, this property does not hold, in general,
for the same L~-approximation of SBG,p with various pairs p and q.

First we prove that the 8-dimension per unit volume of SBG,p is not
bigger asymptotically than (2n) -n meas G for every pair p and q. Later we
will see that this quantity can be equal asymptotically to zero for the case
q > 2 (Theorem 7). Set ~(G, T) = ~((SBG,p)T, L;) for the fixed pair p
and q.

1 T ---> 00 means Ti ---> +00 for i = 1, ..., n.
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THEOREM 5. Let 1~p, q ~ 00 and let G be a Jordan-measurable and
bounded subset of R n. Then

lim sup (2T) -I Jt:(G, T) ~ (2n) -n meas G (0 < 8 < 1).
T_a:;

Proof Step 1. Let G = Q6' i.e., BG,p = B",p' Taking an arbirary
6 E R:, by Theorem 1 we have for every f E BG,p

f(x) = L.J(hk) <p(x - hk),

where <p(x) = sincn(px){ sincn(bxI2) }2, p = 6 + 0", h = nip. Let (X be a fixed
positive number, !< (X < 1. We define N E R: by N;h; = T; + T~, i = 1, "0' n,
for TER:. From Theorem 3 it is not hard to check that Ilf -SNfllq,T
converges to 0 uniformly on SB",p, as T -400. Thus, for arbirary 0 < E < 1,
there exists some TOER: such that Ilf-SNfllq,T~8 for all T~ TO and
f E SB",p. Hence,

E( (SB", p)T, L T
, L;) ~ 8,

where L is the linear hull of the functions <pC - hk), k E ZN' This implies
that

n

Jt:(G, T)~ Il (2N;+I)=n-n(2T)1<pI+o(T 1)
;~1

because dimL~n7~1 (2N;+ 1). Letting T-4 00, we obtain

lim sup (2T)-1 Jt:(G, T) ~ n-n(O" + 6)1.
T_a:;

As 6 is arbitrary, this proves the theorem for the case G = Q".

Step 2. Let G=Uj~l(xJ+Q,,) and int(xJ+Q,,)nint(xJ'+Q,,)#0,
for j # j'. This case can be proved in a way similar to Step 1 using the
representation for f E SBG, P

m

f(x) = L exp(i<xJ,x»)£(x),
J~ 1

where £ E B", p and II£ II p ~ C, the constant c does not depend on f (cf. [9]).

Step 3. Let G be an arbitrary Jordan-measurable set. We will follow
[9J. There exist sets G' and G" of the form considered in Step 2 such that
G' c G c G" and the measure of G'\G" is as small as we like. Now the
theorem follows from the case considered in Step 2 and from the trivial
inclusions SBG"p c SBG,p C SBG",p.

The following two theorems sharpen Theorem 5.
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THEOREM 6. Under the hypotheses of Theorem 5 let p ~ q. Then for some
0< 80 < 1

lim (2T)-1 .x;;(G, T) = (2n)~n meas G
T~ 00

Proof In virtue of Theorem C we must prove the theorem for the case
p> q. For the latter case from Theorem C and (2) we can easily verify the
inequality

lim inf (2T)-1 .x;;(G, T) ~ (2n)-n meas G
T~ 00

for some 0 < 8 0 < 1. This and Theorem 5 imply Theorem 6 for p > q.

Denote by B;, 1,,;; p";; 00, the unit ball of the normed linear space I; of
finite sequences {xkH=1 with the norm (this norm is changed to max­
norm when p = 00 )

THEOREM 7. Under the hypotheses of Theorem 5 let p < q and G = QQ"'
Then the following assertions hold:

(i) For q<2

lim sup (2T) -I .x;;(G, T)
T~oo

x lim inf (2T)-1 .x;;(G, T) x aI, a E R"-r, 0 < 8 < 1.
T~ 00

(ii) Forq>2

lim sup (2T)-2Iq .x;;(G, T)
T~oo

x lim inf (2T) -21q .x;;(G, T) x 8-
va'", a E R"-r, 0 < 8";; 80 ,

T~ 00

where 0 < 80 < 1, v = 2 max{ 1, (1/2 -1/q}/(I/p -1/q)} and J1 = max{ 1, 2/p}.

Proof We prove the theorem in the case p < 2 < q. The other cases can
be proved in a similar way.

Upper Estimate. For p < 2 < q we check the inequality

lim sup (2T) -21q ~(G, T) ~ 8 -2(J2Ip,

T~ 00

(13)
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Consider the sampling representation (5) of ! E BG, p with <p(x) =
sincn (2ax){sincn(ox/2)f, [) = a, p = 2a, h = n/2(J. Define N E R: by
Nh = 2T for T E R: and put V = {SN!:fESBG,p} and U =
{f -SNf:!ESBG,p}, where SNf is the associated finite sampling sum.
In view of the inclusion SBG, pC V + U, we have

(14)

First we estimate the first term in the right-hand part of (14). By
Theorem 2 we get

II {j(hk)} Ill' ~ a
l
/
p Ilfll pp

and

fEV,

where s= n7~1 (2[NJ + 1) (here and hereafter [a] denotes the integral
part of a E R). Hence by properties of the m-width one can verify that for
m<s

d (VT LT)~c al/p-I/qd (B S 1S
)

rn 'q ~ 1 m p'" q , (15)

where C 1 = c1(p, q) is a positive constant. Set m = (A8)-2 (2Tf/q a2/p, where
the constant will be defined later. Applying the estimate of dm(B;, l~) in
[12J, we obtain

aER:,O<8<80 , (16)

where 80 = 8o(A), C2 = c2(p, q) are positive constants. Defining A=
(2C 1C2)-I, from (15) and (16) we have dm(V T

, L~)~8/2. This implies

(17)

We now estimate the second term in the right-hand part of (14). From
Theorem 3 it follows that Ilf - S N fll q, T converges to zero uniformly on
SBG,p as T ---+ 00. Hence we obtain the equality ~/2(U T, L~) = 0 (here (J
and 8 are fixed). This and (14), (17) prove (13).

Lower Estimate. From (13) we can see that the theorem will be proved
for the case P < 2 < q if the following relation is true:

lim inf (2T)-2/q~(G, T)
T~ 00

(18)
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Let <p'(x)={sincn(O"x/2)}Z and let 0( be a fixed posItIve number,
0< 0( < !. We define N E R: by Nih i= Ti - T~, i = 1, ..., n, where h = 2n/0".
Let H be the set of all linear combinations f of the functions <p'(. - hk),
kEZN , such that Ilfll p ::;; 1. In order to prove (18), since by Lemma 1
He SBG,p, it is sufficient to check the inequality

lim inf (2T) -Z/q ff.(H T, L~)
T-+ 00

~e-ZO"Z/p, O"ER:,O<e<eo' (19)

From Theorem 4 it is not hard to verify that Ilfll p , T converges to Ilfll p

uniformly on H when T -+ 00. Hence by Theorem 2 we have

Ilfll t, T~ O"-l/t II {J(hk)} Ill;' fEH, T?; TO (t= p, q),

where r = n7~ 1 (2[N;] + 1). By the latter relation, analogously to that in
the upper estimate, one can see that

d (H T LT)>-c O"I/p-l/qd (Br lr)
m 'q '/'" 3 m P' q'

where C3 = C3(P, q) is a positive constant. Further, the proof of (19) can be
continued in the same way as in the proof of (13).

4.2. e-~ntropy

Let X be a metric space and A be a compact subset of X. Denote by
.;v,;(A, X), e> 0, the minimal number of elements of an e-net of A. Then the
quantity Yt,;(A, X) = log .;v,;(A, X) is called the e-entropy of A (cr. [13]).
This quantity expresses the necessary number of bits for the binary
recording the "information" set A within to e.

LEMMA 2. Let X be a Banach space and A be a compact subset of X.
Then

Yt,;(A, X)::;; ff./z(A, X) log{8(do+ e)/e},

where do = do(A, X).

Proof Let m(y)=sup{m:dm (A,X)?;l/y}. The lemma follows from
the trivial inequality ff.(A, X)?; m( l/e) and the inequality m(2/e)
log{8(do+d/e}?; Yt,;(A, X), proved in [16].

LEMMA 3. Let G be a bounded subset of R n
• Then (SBG,p)T is a compact

subset of L~ for any pair p, q and TER:.

Proof It is clear that we must prove the lemma only for G = Q,Y' and,
because of (2), for p = 00. This case was proved by Bernstein and Nikolskii
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for p = q = 00 (cf. [17]). Hence by the inequality Ilfllq,T~ (2T)1/q Ilflloo,T
the lemma follows for p = 00, q < 00.

Set Jf;;(G, T)=Jf;;((SBG,pf, L;) for the fixed pair p and q.

THEOREM 8. Let 1~ P = q ~ 00 and let G be a Jordan-measurable
bounded subset of R n. Then

lim lim sup log-1 1/B(2T)-1 Jf;;(G, T) (20)

= lim lim inflog- 1 1/B(2T)-1 Jf;;(G, T)
e~,O T~ 00

= (2n)-n meas G. (21 )

Proof Since (SBG,p)T is contained in the unit ball of LJ, we have
do((SBG,p)T, LJ) ~ 1. Hence and from Lemmas 2 and 3 and Theorem 5 it
follows that (20) is not greater than (2n) -n meas G. Thus, the theorem will
be proved if we show that the left-hand part of (21) is not less than
(2n) -n meas G. As in estimates for B-dimension in Theorem 5 we verify this
inequality only for the case G = Qu' Let <p(x) = sincn(px) sincn(bx), b < a,
p = a-b. Taking a fixed positive number ct, 0 < ct < !, we define N E R: by
N;h; = T; - T~, where h = n/p. Let F be the set of linear combinations f of
the functions <p( ·-hk), kEZN , such that Ilfllp~ 1. Using Theorem 4 one
can check that there exists TO E R: such that 2 -1F( T) eFT for any
T?:- TO, where F( T) = {f EFT: II f II p, T~ 1}. Applying the estimate for the
B-entropy of finite dimensional sets in [22, pp. 276-279] we obtain

Jf;;(2 -IF(T), LJ)?:- slog *= n-n(2T)1 (a - b)1 + o( T 1
)

as T ---'> 00, where s =n7~ 1 (2[NJ + 1) is the dimension of the linear huH
of F( T). Hence, since b is arbitrary and by Lemma 1 2- 1F( T) eFT c

(SBG,p)T, it is easy to verify that the left-hand part of (21) is not less than
n-na l = (2n)-n meas G.

Employing Theorem 7 in a similar way we obtain the following

THEOREM 9. Under the hypotheses and notation of Theorem 7 the
following assertions hold:

(i) Forq<2

lim lim sup log -1 1/B(2T) -1 Jr;;(G, T) ::=::: a!,
8 ........... 0 T~oo

(ii) For q>2

lim lim sup B-v log-1 1/B(2T) -2/q Jr;;( G, T) ::=::: aI', a E R:.
8-+0 T-+ 00
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Remark. Since the unit ball is Jordan-measurable (a set G is called
Jordan-measurable if the Riemann integral of the characteristic function of
G exists), Theorems 5, 6 and 8 and, as is easy to see, Theorems 7(i) and
8(i) are true in the case G in E G , p is the unit ball.
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